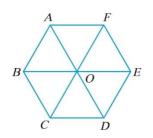
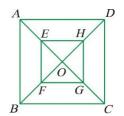

1. _____ (單選)如右圖所示,試將 \overline{AB} 寫成 $x\overline{a}+y\overline{b}$, $x \cdot y$ 是實數,則

下列何者正確?(A)
$$\frac{3}{4}$$
, $y=2$ (B) $-\frac{3}{4}$, $y=2$ (C) $x=\frac{3}{4}$, $y=-2$

(B)
$$-\frac{3}{4}$$
, $y=2$

(C)
$$x = \frac{3}{4}$$
, $y = -2$


(D)
$$x = \frac{4}{3}$$
, $y = -2$


2. _____ (多選)如右圖,點 O 為正六邊形 ABCDEF 的 中心。試問 \overrightarrow{AB} 與以下哪些向量相等?

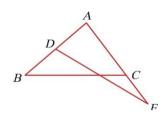
(A) \overrightarrow{FE} (B) \overrightarrow{ED} (C) \overrightarrow{FO} (D) \overrightarrow{CO} (E) \overrightarrow{AO} \circ

3. _____ (多選)如右圖,O 為正方形 ABCD 對角線的交 點,且 $E \cdot F \cdot G \cdot H$ 分別為線段 $\overline{OA} \cdot \overline{OB} \cdot \overline{OC} \cdot \overline{OD}$ 的中 點。選出正確的選項。(A) $\overrightarrow{OB} = 2\overrightarrow{OH}$ (B) $\overrightarrow{OA} = 2\overrightarrow{OG}$

- $\overrightarrow{AD} + \overrightarrow{CB} = \overrightarrow{0}$ (D) $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{BC}$ (E) $\overrightarrow{AB} \overrightarrow{BC} = \overrightarrow{DB}$ °

4. 已知四邊形 ABCD 中,A(0,2),B(-1,-2),C(3,1),且 $\overrightarrow{BC}=2\overrightarrow{AD}$,則 D 點坐標為_____。

5. 設平面上有三個點 A(2,1) , B(-1,5) , C(3,-1) , 若現有一質點由原點 O 出發,沿 \overrightarrow{AB} 方向走 $2\overrightarrow{AB}$ 單位長到達 P 點,再沿著 \overrightarrow{BC} 方向走 $3\overrightarrow{BC}$ 單位長到達 Q 點,試求 $\left|\overrightarrow{OQ}\right| = ______$ 。

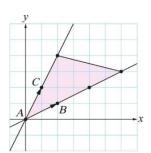

6. 已知 $\overrightarrow{a} = (1,-2)$, $\overrightarrow{b} = (3,-2)$, $\overrightarrow{c} = (8,9)$,設 $\overrightarrow{c} = x \overrightarrow{a} + y \overrightarrow{b}$,則 $x + y = \underline{\qquad}$ 。

7. 設 A(1,-1) , B(2,k) , C(h,3) , D(4,5) 為平行四邊形 ABCD 的四個頂點,則 h+k=_____。

8. 設 A(2,-1) , B(-4,5) 為平面上相異兩點 , P 為直線 AB 上一點 ,且滿足 \overline{AP} : \overline{BP} = 2 : 1 ,則 P 點的坐標為______。

9. 正六邊形 ABCDEF 中, $\overrightarrow{AE} = m\overrightarrow{AB} + n\overrightarrow{AC}$,則 $m-n = \underline{}$ 。

10. 如右圖, D 為 \overline{AB} 的中點, \overline{AC} : \overline{CE} = 2:1, 設 $\overrightarrow{DE} = x\overrightarrow{AB} + y\overrightarrow{AC}$,則數對 $(x, y) = \underline{\hspace{1cm}}$ 。


- 11. _____ (單選) $\triangle ABC$ 中, \overline{AB} =4, \overline{AC} =3, $\angle BAC$ =60°,且 $\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AC}$, $x \ge 0$, $y \ge 0$, x + y = 1 , 若所有 P 點所成之圖形為 S , 則下列 何者正確 ?(A) S 為一直線 (B) S 為射線 (C) P 不在 \overline{BC} 上 (D) S 的長為 3(E) S 的長為 $\sqrt{13}$ 。
- 12. _____ (單選)平行四邊形 ABCD 中,下列五個向量有幾個會使得終點 P 落 在 $\triangle BCD$ 内部?

$$(1)\overrightarrow{AP} = \frac{1}{4}\overrightarrow{AB} + \frac{3}{7}\overrightarrow{AD} \cdot (2)\overrightarrow{AP} = \frac{4}{3}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AD} \cdot (3)\overrightarrow{AP} = \frac{3}{4}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AD} \cdot$$

$$(4) \overrightarrow{AP} = \frac{3}{2} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AD} \cdot (5) \overrightarrow{AP} = -\frac{1}{5} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AD} \circ$$

- (A) 1 個 (B) 2 個 (C) 3 個 (D) 4 個 (E) 5 個。

13. _____ (多選)如右圖,已知 A 為(0,0), $\overrightarrow{AB}=(2,1)$, $\overrightarrow{AC} = (1,2)$, $\overrightarrow{AP} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$,請問下列哪些選項的 P 點 落在陰影區域內(不含邊界)?(A) $\overrightarrow{AP} = 3\overrightarrow{AB} + 2\overrightarrow{AC}$

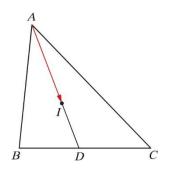
(B)
$$\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{AC}$$

(B)
$$\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{AC}$$
 (C) $\overrightarrow{AP} = 2\overrightarrow{AB} + \overrightarrow{AC}$

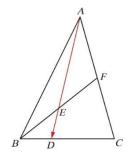
(D)
$$\overrightarrow{AP} = \overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC}$$

(D)
$$\overrightarrow{AP} = \overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC}$$
 (E) $\overrightarrow{AP} = \frac{3}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$ °

14. _____ (多選) 設
$$\triangle ABC$$
 中, $\overrightarrow{AI} = \frac{2}{5}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$,下列

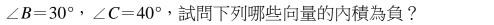

何者正確? (A)
$$\overrightarrow{AD} = \frac{5}{11} \overrightarrow{AB} + \frac{6}{11} \overrightarrow{AC}$$
 (B) $\overrightarrow{AI} : \overrightarrow{ID} = 11 : 4$

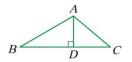
(B)
$$\overline{AI}$$
: \overline{ID} = 11: 4


$$(C) \overrightarrow{AI} = \frac{5}{11} \overrightarrow{AD}$$

内心。

(C)
$$\overrightarrow{AI} = \frac{5}{11}\overrightarrow{AD}$$
 (D) $\overrightarrow{BI} = -\frac{3}{5}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$ (E) $I \not \Rightarrow \triangle ABC$ in

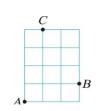

15. 在
$$\triangle ABC$$
 中,已知 \overline{BE} : \overline{EF} = 1 : 1, \overline{AF} : \overline{FC} = 1 : 1,則 \overline{AD} = $x\overline{AB}$ + $y\overline{AC}$,則數對 (x,y) = ______。



16. ______ (單選)設
$$\overrightarrow{a} = (4,-2)$$
, $\overrightarrow{b} = (9,3)$,則 \overrightarrow{a} 與 \overrightarrow{b} 之夾角 θ 為何? (A) 30° (B) 45° (C) 60° (D) 90° (E) 120°。

17. ______(多選)設
$$\overrightarrow{a}$$
 , \overrightarrow{b} , \overrightarrow{c} 皆為非零向量且 \overrightarrow{a} 與 \overrightarrow{b} 不平行,試問下列哪些選項正確?(A) $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ 時, $\overrightarrow{a} \perp \overrightarrow{b}$ (B) $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$ 時, $|\overrightarrow{a} \perp \overrightarrow{b}|$ (C) $|\overrightarrow{a} \perp \overrightarrow{b}|$ 時, $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$ (D) $(|\overrightarrow{a} + \overrightarrow{b}|) \perp (|\overrightarrow{a} - \overrightarrow{b}|)$ 時, $|\overrightarrow{a}| = |\overrightarrow{b}|$ (E) $|\overrightarrow{a} \cdot \overrightarrow{b}| = |\overrightarrow{a} \cdot \overrightarrow{c}|$ 時, $|\overrightarrow{b}| = |\overrightarrow{c}|$

18. _____ (多選)如右圖,在 $\triangle ABC$ 中, \overline{AD} 是 \overline{BC} 的高,


- (A) $\overrightarrow{AB} \cdot \overrightarrow{AC}$ (B) $\overrightarrow{AB} \cdot \overrightarrow{BC}$ (C) $\overrightarrow{BC} \cdot \overrightarrow{AD}$ (D) $\overrightarrow{AC} \cdot \overrightarrow{BC}$ (E) $\overrightarrow{AB} \cdot \overrightarrow{BA} \circ \overrightarrow{BC}$

19. 平面上四點 A(-1,3) , B(5,2) , C(4,1) , D(2,-6) , 則 $\overrightarrow{AC} \cdot (2\overrightarrow{BC}-3\overrightarrow{AD}) = \underline{\hspace{1cm}}$ 。

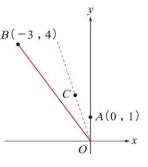
20. 設向量 \overrightarrow{a} = (3,4),若向量 \overrightarrow{b} 與 \overrightarrow{a} 反方向,且 $\left|\overrightarrow{b}\right|$ = 2,則 \overrightarrow{b} = _____。

21. 設 $\overrightarrow{a} = (3,-5)$, $\overrightarrow{b} = (2x,10)$, $\overrightarrow{c} = (x,y)$,若 $\overrightarrow{a}//\overrightarrow{b}$, $\overrightarrow{b} \perp \overrightarrow{c}$,則 $y = \underline{\hspace{1cm}}$ 。

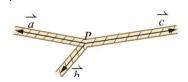
22. 右圖為每一小格均為邊長為 1 的正方形,試求 $\overrightarrow{AB} \cdot \overrightarrow{AC} =$ ____。

23. 設 $\triangle ABC$ 之三邊長為 $\overline{AB} = 3$, $\overline{BC} = 6$ 、 $\overline{CA} = 7$,試求 $\overline{AB} \cdot \overline{BC} = \underline{\hspace{1cm}}$ 。

24. 兩向量滿足
$$\left| \overrightarrow{a} \right| = 1$$
, $\left| \overrightarrow{b} \right| = 3$,且 \overrightarrow{a} 與 \overrightarrow{b} 的夾角為 120° ,求 $\left| 3\overrightarrow{a} - \overrightarrow{b} \right| = _____ \circ$


25. 已知O(1,1),A(7,-1),B(3,5) 為 $\triangle OAB$ 之三頂點,試求 \overrightarrow{OA} 在 \overrightarrow{OB} 方向上的正射影 為_____。

26. 若
$$\overrightarrow{a}=(x,3)$$
, $\overrightarrow{b}=(2,y)$,其中 $\left|2\overrightarrow{a}+3\overrightarrow{b}\right|=\sqrt{10}$,試求 $\overrightarrow{a}\cdot\overrightarrow{b}$ 最大值為_____。


27. 等腰梯形 ABCD, $\angle A=60^\circ$, $\overline{AD}=\overline{DC}=\overline{CB}=6$,M、N 分別為 \overline{BC} 、 \overline{CD} 之中點,試求 $\overline{AC}\cdot\overline{MN}=$ _____。

28. 如右圖,在直角坐標平面中,O 為原點,已知 A(0,1), B(-3,4) ,若 C 點在

$$\angle AOB$$
的角平分線上,且 $\left| \overrightarrow{OC} \right| = 2$,則 $\left| \overrightarrow{OC} \right| = 2$

29. 如右圖,趣味競賽中 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 三力同時施力於 P 點,並達到力平衡。已知 $\left| \overrightarrow{a} \right| = 6$, $\left| \overrightarrow{b} \right| = 3$,且 $\left| \overrightarrow{a} \right|$ 的夾角為 60° ,試求 $\left| \overrightarrow{c} \right| = _____$ 。

30. 一單位圓內接 $\triangle ABC$,若 O 為單位圓之圓心,且 $4\overrightarrow{OA}+5\overrightarrow{OB}+6\overrightarrow{OC}=\overrightarrow{0}$,則:

$$(1)\overrightarrow{OA} \cdot \overrightarrow{OB} = \underline{\qquad} \circ (2) \overrightarrow{AB} = \underline{\qquad} \circ$$

31. _______(單選)已知 A(2,-5) , B(1,0) , C(-2,7) ,則 $\triangle ABC$ 面積為何? (A) 4 平方單位 (B) 8 平方單位 (C) 12 平方單位 (D) $4\sqrt{2}$ 平方單位 (E) $2\sqrt{3}$ 平方單位。

- 32. _____ (單選)已知 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 2$,則 $\begin{vmatrix} 3a+2c & 3b+2d \\ 2a-3c & 2b-3d \end{vmatrix}$ 之值為何?

 - (A)-26 (B)-13 (C) 0 (D) 13 $(E) 26 \circ$

- 33. _____ (單選)試求行列式 $\begin{vmatrix} 49 \times 2^{10} & 76 \times 2^{10} \\ 23 \times 2^{10} & 36 \times 2^{10} \end{vmatrix}$ 之值。

- (A) 2^{14} (B) 2^{18} (C) 2^{24} (D) 2^{40} (E) 2^{44} \circ

- 34. _____ (多選)關於二階行列式,選出正確的選項。
- (A) $\begin{vmatrix} 23 & 45 \\ 67 & 89 \end{vmatrix} = \begin{vmatrix} 23 & 67 \\ 45 & 89 \end{vmatrix}$ (B) $\begin{vmatrix} 3a & 3b \\ 3c & 3d \end{vmatrix} = 3 \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ (C) $\begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} c & d \\ a & b \end{vmatrix} = 0$
- (D) $\begin{vmatrix} 3a & 5a \\ 3c & 5c \end{vmatrix} = 0$ (E) $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a+10b & b \\ c+10d & d \end{vmatrix}$

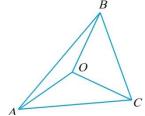
35. $\triangle ABC$ 中,已知 $\left| \overrightarrow{AB} \right| = 3$, $\left| \overrightarrow{AC} \right| = 4$,且 $\triangle ABC$ 的面積為 $2\sqrt{5}$,試求

36. 若
$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$$
之解為 (3,2),則 $\begin{cases} 3bx - 2ay + e = 0 \\ 3dx - 2cy + f = 0 \end{cases}$ 之解為 (x, y) = ______。

37. 已知
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 3$$
, $\begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} = 2$, $\begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} = 1$,試求方程組 $\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$ 的解 $(x, y) = \underline{\qquad}$

38. 已知由
$$\overrightarrow{a}=(a_1,a_2)$$
 , $\overrightarrow{b}=(b_1,b_2)$ 所決定的平行四邊形面積為 5,則由 $2\overrightarrow{a}+\overrightarrow{b}$, $3\overrightarrow{a}-2\overrightarrow{b}$ 所決定的平行四邊形面積為_____。

39. 已知 \overrightarrow{c} 可寫成 \overrightarrow{a} 、 \overrightarrow{b} 的線性組合且 \overrightarrow{c} = 4 \overrightarrow{a} + t \overrightarrow{b} ,若 \overrightarrow{a} 、 \overrightarrow{b} 所張成的平行四邊形面積為 \overrightarrow{b} , \overrightarrow{c} 所張成的平行四邊形面積為。



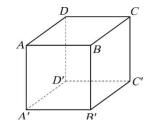
41. 已知
$$A(x_1, y_1)$$
 , $B(x_2, y_2)$, $C(x_3, y_3)$,且 $\triangle ABC$ 之面積為 10,若
$$P(3x_1-4y_1,5y_1-6x_1)$$
 , $Q(3x_2-4y_2,5y_2-6x_2)$, $R(3x_3-4y_3,5y_3-6x_3)$,則 $\triangle PQR$ 之 面積為______。

42. _____ (多選) 設聯立方程式
$$\begin{cases} (k-1)x+y-3=0 \\ x-y+(2k-5)=0 \end{cases}$$
 有正整數解,則下列哪些 選項正確?(A) $k=1$ (B) $k=2$ (C) $(x,y)=(6,3)$ (D) $(x,y)=(2,1)$ (E) $(x,y)=(6,1)$ \circ

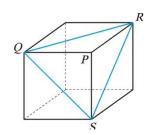
43. 已知 $2\overrightarrow{a}+3\overrightarrow{b}$, $\overrightarrow{a}-2\overrightarrow{b}$ 兩向量所張成的平行四邊形面積為 10,試求 $2\overrightarrow{a}-3\overrightarrow{b}$, $2\overrightarrow{a}-\overrightarrow{b}$ 兩向量所張成的平行四邊形面積為_____。

44. $\triangle ABC$ 內部一點 O,滿足 $\overrightarrow{OA} + 2\overrightarrow{OB} + \sqrt{3} \overrightarrow{OC} = \overrightarrow{0}$,且 $\left| \overrightarrow{OA} \right| = \left| \overrightarrow{OB} \right| = \left| \overrightarrow{OC} \right| = 1$, 則 $\triangle ABC$ 之面積為_____。

45. 第(1)~(8)小題為是非題,對的打○,錯的打×。

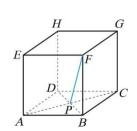

- (1)_____ 設空間中相異兩平面 E_1 , E_2 交於一直線 L,若 L 垂直於另一平面 E_3 ,則 E_1 , E_2 均與 E_3 垂直。
- (2)_____ 空間中三相異直線 L_1 , L_2 , L_3 , 若 $L_1 \perp L_3$ 且 $L_2 \perp L_3$, 則 $L_1 / / L_2$ 。
- (3)_____ 空間中兩相異直線 L_1 , L_2 及平面 E,若 $L_1/\!/E$ 且 $L_2/\!/E$,則 $L_1/\!/L_2$ 。
- (4)____ 空間中兩相異直線 L_1 , L_2 ,則必存在另一直線 L_3 使得 $L_3 \perp L_1$ 且 $L_3 \perp L_2$ 。
- (5)____ 空間中一直線 L ,若 P 點在 L 上,則過 P 點且與 L 垂直的所有直線 皆落在同一平面上。
- (6)_____ 空間中兩相異平面 E,F,若直線 L 在 F 上且 L//E,則 E//F。
- (7)_____ 空間中兩歪斜線 L_1 , L_2 及平面 E,若 $L_1//E$,則 $L_2//E$ 。
- (8) 空間中不共線之三相異點 A ,B ,C ,若有一動點 P 滿足 $\overline{PA} = \overline{PB} = \overline{PC}$,則 P 點的軌跡圖形為一直線。

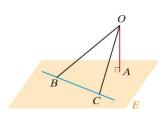
- 46. _____(多選)下列有關空間中的敘述哪些正確?
 - (A)不平行之兩直線,必交於一點 (B)一線段之中垂線恰有一條
 - (C)垂直同一直線之兩相異平面必互相平行 (D)任意兩相異直線必有一公垂線
 - (E)設一直線 L 交一平面 E 於 A 點,若在平面 E 上有一直線 L' 過 A 點月與直 線 L 垂直,則L與E垂直。


- 47. _____ (多選)下列敘述哪些正確?

 - (A)空間中兩平行線決定一平面 (B)平面上兩相異直線,若不相交則必平行 (C)空間中任意三相異點決定一平面 (D)空間中兩歪斜線恰有一條公垂線
- (E)空間中相異兩直線如果不平行,則必相交於一點。

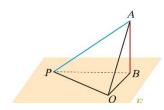
48. (多選)如右圖, *ABCD-A'B'C'D'*為立方體的八個


49. 設一正六面體之邊長為 a,共頂點的三稜邊為 \overline{PQ} , \overline{PR} , \overline{PS} ,試求:(1) \triangle QRS 之面積為。 (2) 截去平面 QRS 一角後,則剩餘部分體積 為 \circ (3) P 點至平面 QRS 的距離為 h ,則 h= _____ \circ


50. 四面體 A-BCD 中, $\overline{AB}=\overline{AC}=\overline{AD}=k$, $\overline{BC}=\overline{CD}=\overline{DB}=6$,平面 ABC 與平面 BCD 所夾之銳角為 30°,則 k 之值為_____。

51. ______ (多選)下列關於空間中的點、直線和平面關係的描述,有哪些選項的 敘述為真?(A)與平面 E 垂直的任兩相異直線必互相平行。(B)通過平面 E 外的一定點 A 的所有直線中,恰有一條直線與平面 E 垂直。(C)平面 E 和平面 F 互相 垂直,若 L_1 、 L_2 分別為平面 E、F 上的直線,則 L_1 L_2 。(D)空間中平面 E 及其 外一點 P,則過 P 而與 E 垂直的平面恰有一個。(E)若平面 E 上有兩條不平行的 相異直線 PA、PB,若直線 L 同時與直線 PA、PB 垂直,則直線 L 垂直平面 E。

- 52. _____ (多選)如右圖,正立方體 ABCD-EFGH 中 \overline{AC} 與 \overline{BD} 交於 P 點,試問下列各種垂直關係,哪些是正確的?
 - (A) $\overline{AF} \perp \overline{CF}$ (B) $\overline{AC} \perp \overline{BD}$ (C) $\overline{FP} \perp \overline{AC}$ (D) $\overline{FP} \perp \overline{BD}$
 - (E) $\overline{FP} \perp \overline{FG} \circ$



53. 如右圖, \overline{OA} 工平面 E 於 A 點,直線 BC 在平面 E 上,若 $\overline{BC} = 6$, $\overline{OB} = \overline{OC} = 5$,且平面 OBC 和平面 ABC 之兩面角為 θ , $\cos\theta = \frac{3}{4}$,則 $\overline{OA} = \underline{\hspace{1cm}}$ 。

54. 如右圖,P,Q 均在平面 E 上,設空間中一點 A,過 A 作平面 E 的垂線,得 垂足為 B,平面 APQ 與平面 BPQ 所交成的兩面角為 60° ,且 $\angle APQ=30^\circ$,

 $\overline{PA} = 12$,則 \overline{PA} 在平面 E 上之投影長 $\overline{PB} = \underline{\hspace{1cm}}$ 。

簡答

1.(C) • 2.(B)(C) • 3.(B)(C)(E) • 4.
$$(2,\frac{7}{2})$$
 • 5.2 $\sqrt{34}$ • 6. $-\frac{9}{2}$ •

4.
$$(2,\frac{7}{2})$$

$$5.2\sqrt{34}$$

$$6.-\frac{9}{2}$$
 °

7.2 ° 8.
$$(-2,3)$$
或 $(-10,11)$ ° 9. -5 ° $10.(-\frac{1}{2},\frac{3}{2})$ ° $11.(E)$ ° $12.(A)$ °

$$10.(-\frac{1}{2},\frac{3}{2})$$

$$15.(\frac{2}{3},\frac{1}{3})$$

13.(B)(E)
$$\circ$$
 14.(B)(D) \circ 15.($\frac{2}{3}, \frac{1}{3}$) \circ 16.(B) \circ 17.(A)(B)(C)(D) \circ

18.(A)(B)(E) • 19.-105 • 20.
$$\left(-\frac{6}{5}, -\frac{8}{5}\right)$$
 • 21.- $\frac{9}{5}$ • 22.7 • 23.2 •

$$21.-\frac{9}{5}$$

$$25.(\frac{2}{5},\frac{4}{5})$$

$$26.2\sqrt{5}-12$$

$$24.3\sqrt{3}$$
 ° $25.(\frac{2}{5},\frac{4}{5})$ ° $26.2\sqrt{5}-12$ ° $27.-27$ ° $28.(-\frac{\sqrt{10}}{5},\frac{3\sqrt{10}}{5})$ °

$$29.3\sqrt{7}$$
 °

$$29.3\sqrt{7}$$
 ° $30.(1) - \frac{1}{8}$; $(2)\frac{3}{2}$ ° $31.(A)$ ° $32.(A)$ ° $33.(C)$ °

$$36.\left(-\frac{2}{3},\frac{3}{2}\right)$$

34.(A)(C)(D)(E)
$$\circ$$
 35. $\pm 8 \circ$ 36. $\left(-\frac{2}{3}, \frac{3}{2}\right) \circ$ 37. $\left(-\frac{2}{3}, -\frac{1}{3}\right) \circ$ 38.35 \circ

39.28。 40.4 或
$$-1$$
。 41.90。 42.(A)(B)(C)(D)。 43. $\frac{40}{7}$ 。

$$43.\frac{40}{7}$$

44.
$$\frac{3+\sqrt{3}}{4}$$
 °

44.
$$\frac{3+\sqrt{3}}{4}$$
 ° 45.(1) \bigcirc ; (2)x ; (3)x ; (4) \bigcirc ; (5) \bigcirc ; (6)x ; (7)x ; (8) \bigcirc °

46.(C)(D)
$$\circ$$
 47.(A)(B)(D) \circ 48.(A)(E) \circ 49.(1) $\frac{\sqrt{3}}{2}a^2$; (2) $\frac{5}{6}a^3$; (3) $\frac{\sqrt{3}}{3}a$ \circ

$$50.\sqrt{13}$$

50.
$$\sqrt{13}$$
 · 51.(A)(B)(E) · 52.(B)(C) · 53. $\sqrt{7}$ · 54. $3\sqrt{13}$ ·

53.
$$\sqrt{7}$$